Wednesday 12 July 2017

การย้าย ค่าเฉลี่ย กระบวนการ ma (1)


8.4 การย้ายแบบจำลองโดยเฉลี่ยแทนที่จะใช้ค่าที่ผ่านมาของตัวแปรพยากรณ์ในการถดถอยแบบจำลองค่าเฉลี่ยเคลื่อนที่จะใช้ข้อผิดพลาดในการคาดการณ์ที่ผ่านมาในรูปแบบการถดถอยเหมือนกัน y c et theta e theta e จุด theta e ที่ et มีเสียงสีขาว เราอ้างถึงนี้เป็นรูปแบบ MA (q) แน่นอนว่าเราไม่ได้สังเกตค่าของเอตดังนั้นจึงไม่ใช่การถดถอยตามความหมายปกติ สังเกตว่าแต่ละค่าของ yt สามารถคิดได้ว่าเป็นค่าเฉลี่ยถ่วงน้ำหนักของข้อผิดพลาดในการคาดการณ์ที่ผ่านมา อย่างไรก็ตามแบบจำลองค่าเฉลี่ยเคลื่อนที่ไม่ควรสับสนกับการปรับค่าเฉลี่ยการเคลื่อนที่โดยเฉลี่ยที่เรากล่าวถึงในบทที่ 6 โมเดลเฉลี่ยถ่วงน้ำหนักใช้สำหรับคาดการณ์ค่าในอนาคตขณะที่ใช้การปรับค่าเฉลี่ยโดยเฉลี่ยเพื่อใช้ประเมินแนวโน้มรอบของค่าในอดีต รูปที่ 8.6: ตัวอย่างสองตัวอย่างของข้อมูลจากโมเดลเฉลี่ยเคลื่อนที่ที่มีพารามิเตอร์ต่างกัน ซ้าย: MA (1) กับ y t 20e t 0.8e t-1 ขวา: MA (2) ด้วย y t e t - e t -1 0.8e t-2 ในทั้งสองกรณี e t จะกระจายสัญญาณรบกวนสีขาวเป็นปกติโดยมีค่าเฉลี่ยศูนย์และค่าความแปรปรวน 1 รูปที่ 8.6 แสดงข้อมูลบางส่วนจากแบบจำลอง MA (1) และ MA (2) การเปลี่ยนพารามิเตอร์ theta1, dots, thetaq ส่งผลให้รูปแบบชุดเวลาต่างกัน เช่นเดียวกับโมเดลอัตถดถอยความแปรปรวนของเทอมข้อผิดพลาด et จะเปลี่ยนขนาดของชุดไม่ใช่รูปแบบ สามารถเขียนแบบ AR (p) แบบ stationary เป็นแบบ MA (infty) ได้ ตัวอย่างเช่นการใช้การทดแทนซ้ำเราสามารถแสดงให้เห็นถึงรูปแบบ AR (1) นี้: เริ่มต้นแอ็พพลิเคชัน amp phi1y et amp phi1 (phi1y e) และ amp phi12y phi1 e และ amp phi13y phi12e phi1 e และ amptext end Provided -1 lt phi1 lt 1 ค่าของ phi1k จะเล็กลงเมื่อ k มีขนาดใหญ่ขึ้น ดังนั้นในที่สุดเราจึงได้รับ yt et phi1 e phi12 e phi13 e cdots กระบวนการ MA (infty) ผลย้อนกลับถือถ้าเรากำหนดข้อ จำกัด บางประการเกี่ยวกับพารามิเตอร์ MA จากนั้นแบบจำลอง MA เรียกว่า invertible นั่นคือเราสามารถเขียนกระบวนการ MA (q) invertible เป็นกระบวนการ AR (infty) ได้ โมเดลที่ไม่สามารถผันกลับไม่ได้ทำให้เราสามารถแปลงจากโมเดล MA ไปเป็น AR ได้ พวกเขายังมีคุณสมบัติทางคณิตศาสตร์บางอย่างที่ช่วยให้สามารถใช้งานได้ง่ายขึ้น ข้อ จำกัด invertible มีความคล้ายคลึงกับข้อ จำกัด stationarity สำหรับแบบจำลอง MA (1): -1lttheta1lt1 สำหรับโมเดล MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. เงื่อนไขที่ซับซ้อนมากขึ้นถือได้สำหรับ qge3 อีกครั้ง R จะดูแลข้อ จำกัด เหล่านี้เมื่อประมาณโมเดล.2.1 Moving Average Models (MA models) โมเดล series เวลาที่รู้จักกันในชื่อ ARIMA models อาจรวมถึงเงื่อนไข autoregressive และหรือ moving average terms ในสัปดาห์ที่ 1 เราได้เรียนรู้คำอัตโนมัติในรูปแบบชุดเวลาสำหรับตัวแปร x t เป็นค่า lag ของ x t ตัวอย่างเช่นคำจำกัดความที่ล่าช้า 1 คือ x t-1 (คูณด้วยสัมประสิทธิ์) บทเรียนนี้กำหนดคำศัพท์เฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่ในรูปแบบของชุดเวลาเป็นข้อผิดพลาดที่ผ่านมา (คูณด้วยสัมประสิทธิ์) อนุญาต (wt overset N (0, sigma2w)) ซึ่งหมายความว่า w w จะเหมือนกันกระจายอย่างอิสระแต่ละอันมีการแจกแจงแบบปกติมีค่าเฉลี่ย 0 และค่าความแปรปรวนเดียวกัน รูปแบบการเคลื่อนที่โดยเฉลี่ยที่ 1 แสดงโดย MA (1) คือ (xt mu wt theta1w) รูปแบบการเคลื่อนที่โดยเฉลี่ยแบบที่ 2 แสดงโดย MA (2) คือ (xt mu wt theta1w theta2w) , แสดงโดย MA (q) คือ (xt หมู่น้ำหนักเบา theta1w theta2w จุด thetaqu) หมายเหตุ ตำราเรียนและโปรแกรมซอฟต์แวร์จำนวนมากกำหนดรูปแบบที่มีสัญญาณเชิงลบก่อนข้อกำหนด นี้ไม่ได้เปลี่ยนคุณสมบัติทางทฤษฎีทั่วไปของรูปแบบแม้ว่าจะไม่พลิกสัญญาณเกี่ยวกับพีชคณิตของค่าสัมประสิทธิ์ประมาณและเงื่อนไข (unsquared) ในสูตรสำหรับ ACFs และความแปรปรวน คุณจำเป็นต้องตรวจสอบซอฟต์แวร์ของคุณเพื่อตรวจสอบว่ามีการใช้เครื่องหมายเชิงลบหรือบวกในการเขียนแบบจำลองที่ถูกต้องหรือไม่ R ใช้เครื่องหมายบวกในโมเดลต้นแบบดังที่เราทำที่นี่ คุณสมบัติเชิงทฤษฎีของซีรี่ส์เวลากับแบบ MA (1) โปรดทราบว่าค่าที่ไม่ใช่ศูนย์เดียวใน ACF ทางทฤษฎีเป็นค่าความล่าช้า 1 autocorrelations อื่น ๆ ทั้งหมดเป็น 0 ดังนั้นตัวอย่าง ACF กับ autocorrelation อย่างมีนัยสำคัญเท่านั้นที่ล่าช้า 1 เป็นตัวบ่งชี้ของรูปแบบที่เป็นไปได้ MA (1) สำหรับนักเรียนที่สนใจการพิสูจน์คุณสมบัติเหล่านี้เป็นส่วนเสริมของเอกสารฉบับนี้ ตัวอย่างที่ 1 สมมติว่าแบบจำลอง MA (1) คือ x t 10 w t .7 w t-1 ที่ไหน (น้ำหนักเกิน N (0,1)) ดังนั้นค่าสัมประสิทธิ์ 1 0.7 ทฤษฎี ACF ได้รับโดยพล็อตของ ACF นี้ดังนี้ พล็อตที่แสดงให้เห็นคือทฤษฎี ACF สำหรับ MA (1) กับ 1 0.7 ในทางปฏิบัติตัวอย่างมักไม่ค่อยให้รูปแบบที่ชัดเจนเช่นนี้ ใช้ R เราจำลองค่า n 100 ตัวอย่างโดยใช้โมเดล x t 10 w t .7 w t-1 โดยที่ w t iid N (0,1) สำหรับการจำลองแบบนี้ข้อมูลพร็อพเพอร์ตี้ตามเวลาจะเป็นดังนี้ เราไม่สามารถบอกได้มากจากพล็อตนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ เราจะเห็นการเพิ่มขึ้นของความล่าช้าที่ 1 ตามด้วยค่าที่ไม่ใช่นัยสำคัญสำหรับความล่าช้าในอดีต 1. โปรดทราบว่าตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีของ MA ต้นแบบ (1) ซึ่งเป็นค่าความสัมพันธ์ระหว่างความล่าช้าทั้งหมดที่ผ่านมา 1 จะเป็น 0 ตัวอย่างที่แตกต่างกันจะมีตัวอย่าง ACF ที่แตกต่างกันเล็กน้อยที่แสดงด้านล่าง แต่อาจมีลักษณะกว้างเช่นเดียวกัน สมบัติทางทฤษฎีของแบบเวลากับแบบ MA (2) สำหรับแบบจำลอง MA (2) คุณสมบัติทางทฤษฎีมีดังต่อไปนี้: โปรดทราบว่าเฉพาะค่าที่ไม่ใช่ศูนย์ใน ACF ทางทฤษฎีเท่านั้นสำหรับการล่าช้า 1 และ 2 ค่าความสัมพันธ์กับความล่าช้าที่สูงขึ้นคือ 0 ดังนั้น ACF ตัวอย่างกับ autocorrelations อย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 แต่ autocorrelations ที่ไม่สำคัญสำหรับความล่าช้าสูงแสดงให้เห็นถึงรูปแบบที่เป็นไปได้ MA (2) iid N (0,1) ค่าสัมประสิทธิ์คือ 1 0.5 และ 2 0.3 เนื่องจากนี่คือ MA (2) ทฤษฎี ACF จะมีค่าที่ไม่ใช่ศูนย์เฉพาะที่ล่าช้า 1 และ 2 ค่าของสอง autocorrelations ไม่ใช่ศูนย์เป็นพล็อต ACF ตามทฤษฎี เกือบตลอดเวลาเป็นกรณีตัวอย่างข้อมูลเคยชินทำงานค่อนข้างสมบูรณ์เพื่อเป็นทฤษฎี เราจำลองค่าตัวอย่าง 150 ตัวอย่างสำหรับรุ่น x t 10 w t .5 w t-1 .3 w t-2 โดยที่ w t iid N (0,1) พล็อตชุดข้อมูลตามลำดับ เช่นเดียวกับชุดข้อมูลอนุกรมเวลาสำหรับข้อมูลตัวอย่าง MA (1) คุณไม่สามารถบอกได้มากจากข้อมูลนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ รูปแบบเป็นเรื่องปกติสำหรับสถานการณ์ที่โมเดล MA (2) อาจเป็นประโยชน์ มีสอง spikes ที่สำคัญอย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 ตามด้วยค่าที่ไม่สำคัญสำหรับความล่าช้าอื่น ๆ โปรดทราบว่าเนื่องจากข้อผิดพลาดในการสุ่มตัวอย่างตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีเลย ACF for General MA (q) Models คุณสมบัติของโมเดล MA (q) โดยทั่วไปคือมีความสัมพันธ์กับค่าที่ไม่ใช่ศูนย์สำหรับ q lags แรกและ autocorrelations 0 สำหรับ lags ทั้งหมด gtq ความไม่เป็นเอกลักษณ์ของการเชื่อมต่อระหว่างค่า 1 และ (rho1) ในรูปแบบ MA (1) ในรูปแบบ MA (1) สำหรับค่า 1 1 1 ซึ่งกันและกันให้ค่าเช่นเดียวกับตัวอย่างให้ใช้ 0.5 เป็นเวลา 1 จากนั้นใช้ 1 (0.5) 2 เป็นเวลา 1 คุณจะได้รับ (rho1) 0.4 ในทั้งสองกรณี เพื่อตอบสนองข้อ จำกัด ทางทฤษฎีที่เรียกว่า invertibility เรา จำกัด โมเดล MA (1) ให้มีค่าที่มีค่าสัมบูรณ์น้อยกว่า 1. ในตัวอย่างที่ให้ไว้เพียงแค่ 1 0.5 จะเป็นค่าพารามิเตอร์ที่ยอมให้ใช้ได้ในขณะที่ 1 10.5 2 จะไม่ ความผันแปรของรูปแบบ MA แบบจำลอง MA กล่าวได้ว่าเป็น invertible ถ้าเป็นพีชคณิตเทียบเท่ากับรูปแบบ AR อนันต์ converging โดยการบรรจบกันเราหมายถึงค่าสัมประสิทธิ์ของ AR ลดลงเป็น 0 เมื่อเราเคลื่อนที่ย้อนกลับไปในเวลา Invertibility คือข้อจํากัดที่ตั้งโปรแกรมเป็นซอฟต์แวร์ชุดเวลาที่ใช้ในการประมาณค่าสัมประสิทธิ์ของแบบจำลองที่มีเงื่อนไข MA ไม่ใช่สิ่งที่เราตรวจสอบในการวิเคราะห์ข้อมูล ข้อมูลเพิ่มเติมเกี่ยวกับข้อ จำกัด ด้านความสามารถในการซ่อนตัวของ MA (1) ได้รับในภาคผนวก ทฤษฎีขั้นสูงหมายเหตุ สำหรับแบบจำลอง MA (q) ที่มี ACF ที่ระบุมีรูปแบบที่มีการเปลี่ยนแปลงได้เพียงแบบเดียว เงื่อนไขที่จำเป็นสำหรับ invertibility คือสัมประสิทธิ์มีค่าเช่นว่าสมการ 1- 1 y - - q y q 0 มีคำตอบสำหรับ y ที่อยู่นอกวงกลมหน่วย R รหัสสำหรับตัวอย่างในตัวอย่างที่ 1 เราได้วางแผนทฤษฎี ACF ของโมเดล x t 10 w t 7w t-1 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ที่ใช้ในการวางแผน ACF ทางทฤษฎี ได้แก่ acfma1ARMAacf (mac (0.7), lag. max10) 10 ACL ล่าช้าสำหรับ MA (1) กับ theta1 0.7 lags0: 10 สร้างตัวแปรล่าช้าที่มีตั้งแต่ 0 ถึง 10 (h0) เพิ่มแกนนอนลงในพล็อตคำสั่งแรกกำหนด ACF และจัดเก็บไว้ในอ็อบเจกต์ (ACF) และจะมีการจัดเก็บข้อมูลไว้ในออปเจ็กต์ (acfma1, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (1) ด้วย theta1 0.7) ชื่อ acfma1 (เลือกชื่อของเรา) พล็อตคำสั่ง (คำสั่งที่ 3) แปลงล่าช้ากับค่า ACF สำหรับล่าช้า 1 ถึง 10 พารามิเตอร์ ylab ตั้งชื่อแกน y และพารามิเตอร์หลักจะทำให้ชื่อเรื่องเป็นพล็อต หากต้องการดูค่าตัวเลขของ ACF เพียงแค่ใช้คำสั่ง acfma1 การจำลองและแปลงทำตามคำสั่งต่อไปนี้ xcarima. sim (n150 รายการ (mac (0.7))) เลียนแบบ n 150 ค่าจาก MA (1) xxc10 เพิ่ม 10 เพื่อให้ค่าเฉลี่ย 10. ค่าเริ่มต้นของการจำลองจะหมายถึง 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลตัวอย่างจำลอง) ในตัวอย่างที่ 2 เราวางแผนใช้ทฤษฎี ACF ของโมเดล xt 10 wt .5 w t-1 .3 w t-2 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ใช้คือ acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 พล็อต (ล่าช้า acfma2, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (2) กับ theta1 0.5, theta20.3) abline (h0) xcarima. sim (n150 รายการ (mac (0.5, 0.3))) xxc10 พล็อต (x, typeb, หลักจำลองแมสซาชูเซตส์ (2) ซีรี่ส์) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลจำลอง MA (2)) ภาคผนวก: การพิสูจน์คุณสมบัติของ MA (1) สำหรับนักเรียนที่สนใจนี่เป็นหลักฐานสำหรับคุณสมบัติทางทฤษฎีของโมเดล MA (1) ความแปรปรวน: (text (xt) text (mu wt theta1 w) ข้อความ 0 (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) เมื่อ h 1 นิพจน์ก่อนหน้านี้ 1 w 2. สำหรับ h 2 ใด ๆ นิพจน์ก่อนหน้า 0 เหตุผลก็คือตามนิยามของความเป็นอิสระของน้ำหนัก E (w k w j) 0 สำหรับ k j ใด ๆ นอกจากนี้เนื่องจาก w t มีค่าเฉลี่ยเป็น 0, E (w j w j) E (w j 2) w 2 สำหรับซีรี่ส์เวลาให้ใช้ผลลัพธ์นี้เพื่อให้ได้ ACF ที่ระบุไว้ด้านบน รูปแบบแมสซาชูเซตแบบพลิกกลับเป็นแบบที่สามารถเขียนเป็นแบบจำลอง AR ที่ไม่มีที่สิ้นสุดซึ่งจะมาบรรจบกันเพื่อให้ค่าสัมประสิทธิ์ AR แปรผันไปที่ 0 เมื่อเราเคลื่อนตัวกลับในเวลาอนันต์ แสดงให้เห็นถึงความสามารถในการพลิกกลับของ MA (1) ได้ดี จากนั้นเราจะแทนความสัมพันธ์ (2) สำหรับ w t-1 ในสมการ (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) ณ เวลา t-2 สมการ (2) กลายเป็นเราแทนความสัมพันธ์ (4) สำหรับ w t-2 ในสมการ (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) ถ้าเราจะดำเนินการต่อ อนันต์) เราจะได้รับแบบอนุกรม AR อนันต์ (zt wt theta1 z - theta21z theta31z - theta41z จุด) หมายเหตุ แต่ที่ 1 1 สัมประสิทธิ์คูณความล่าช้าของ z จะเพิ่มขึ้น (อนันต์) ในขนาดที่เราย้ายกลับมา เวลา. เพื่อป้องกันปัญหานี้เราต้องใช้ 1 lt1 นี่เป็นเงื่อนไขสำหรับรูปแบบ MA (1) ที่มองไม่เห็น รูปแบบการสั่งซื้อ Infinite Order ในสัปดาห์ที่ 3 ให้ดูว่าแบบจำลอง AR (1) สามารถแปลงเป็นแบบจำลอง MA อนันต์: (xt - mu wt phi1w phi21w dots phik1 w counts sum phij1w) ข้อสรุปของคำพูดเสียงสีขาวที่ผ่านมาเป็นที่รู้จักกัน เป็นตัวแทนเชิงสาเหตุของ AR (1) กล่าวอีกนัยหนึ่ง x t เป็น MA ชนิดพิเศษที่มีจำนวนอนันต์ที่จะย้อนกลับไปในเวลา นี่เรียกว่าลำดับ MA หรือ MA () ที่ไม่มีขีด จำกัด คำสั่งที่แน่นอนคือแมสซาชูเซตส์อนันต์ลำดับ AR และคำสั่งใด ๆ ที่ จำกัด AR เป็นลำดับที่ไม่มีขีด จำกัด MA จำได้ว่าในสัปดาห์ที่ 1 เราสังเกตเห็นว่าข้อกำหนดสำหรับ AR (1) ที่หยุดนิ่งคือ 1 lt1 ให้คำนวณ Var (x t) โดยใช้การแทนสาเหตุ ขั้นตอนสุดท้ายนี้ใช้ข้อเท็จจริงพื้นฐานเกี่ยวกับชุดข้อมูลทางเรขาคณิตที่ต้องใช้ (phi1lt1) มิฉะนั้นชุดข้อมูลจะแตกต่างออกไป Navigation4 กระบวนการ ma1 เป็นขบวนการเฉลี่ยของลำดับการเคลื่อนที่ 4 กระบวนการ MA (1) กระบวนการเฉลี่ยเคลื่อนที่ของลำดับหนึ่ง MA (1) สามารถระบุได้ว่าเป็นหนึ่งที่ x t e t 61537 1 e t-1 t 1, 2, hellip กับ e t เป็นลำดับ iid ที่มีค่าเฉลี่ย 0 และความแปรปรวน 61555 2 e นี่คือลำดับที่อาศัยอยู่โดยสิ้นเชิงเล็กน้อยในขณะที่ช่วงตัวแปร 1 แตกต่างกัน แต่มี 2 ช่วงเวลาที่แตกต่างกัน ลงชื่อสมัครใช้เพื่อดูเวอร์ชันเต็ม 5 กระบวนการ AR (1) กระบวนการอัตถดถอยของการสั่งซื้อ AR (1) สามารถระบุได้ว่าเป็นหนึ่งที่ y t 61554 y t-1 e t t 1, 2, hellip กับ et เป็นลำดับ iid กับค่าเฉลี่ย 0 และความแปรปรวน 61555 e 2 สำหรับกระบวนการนี้จะขึ้นอยู่กับความอ่อนแอต้องเป็นกรณีที่ 1 Corr (yt, y th) Cov (yt, y th) (yy) 1 h ซึ่งจะมีขนาดเล็กเมื่อ h เพิ่มขึ้น 6 แนวโน้มการเข้าชมใหม่ชุดแนวโน้มจะไม่สามารถหยุดนิ่งได้เนื่องจากค่าเฉลี่ยมีการเปลี่ยนแปลงตลอดเวลาชุดแนวโน้มจะขึ้นอยู่กับความอ่อนแอหากชุดของชุดขึ้นอยู่กับความอ่อนแอและนิ่งอยู่กับแนวโน้ม เรียกมันว่าเทรนด์นิ่งกระบวนการตราบเท่าที่มีแนวโน้มรวมทั้งหมดทั้งหมดเป็นอย่างดีภาพตัวอย่างนี้มีส่วนเบลอโดยเจตนา ลงชื่อสมัครใช้เพื่อดูเวอร์ชันเต็ม สมมติฐานค่าเฉลี่ยของเงื่อนไขเป็นศูนย์: E (utxt) 0 สำหรับแต่ละ t ไม่มีความคลาดเคลื่อนที่สมบูรณ์แบบดังนั้นสำหรับความไม่สมดุลของ asymptotic (consistency) เราสามารถทำให้ข้อสมมติฐานของ exogenesis ค่อนข้างอ่อนแอเมื่อเทียบกับความเที่ยงตรง 8 Large สมมุติฐานสันนิษฐานที่แย่กว่าของ homoskedasticity: การย้ายกระบวนการเฉลี่ย MA กระบวนการ AR กล่าวเพียงไม่ได้เป็นกลไกเดียวที่อาจมีการสร้าง Y. สมมติว่าเราสร้างโมเดล Y ดังนี้: v เป็นค่าคงที่และ u เป็นก่อนเป็นเสียงสีขาว stochastic error term. ที่นี่ Y ที่เวลา t เท่ากับค่าคงที่บวกกับค่าเฉลี่ยเคลื่อนที่ของข้อผิดพลาดในปัจจุบันและที่ผ่านมา ดังนั้นในกรณีนี้เราจะบอกว่า Y มีค่าเฉลี่ยเคลื่อนที่อันดับแรกหรือเป็น MA (1) process แต่ถ้า Y ตามนิพจน์มันเป็นกระบวนการ MA (2) โดยทั่วไปแล้ว Yt V PoUt PiUt-i P2Ut-2 ----- PqUt-q (22.2.6) เป็นกระบวนการ MA (q) ในระยะสั้นกระบวนการเฉลี่ยเคลื่อนที่เป็นเพียงการรวมกันของข้อผิดพลาดของข้อผิดพลาดเสียงสีขาว โพสต์ความคิดเห็น Market Supply Curve บทความยอดนิยม Categories

No comments:

Post a Comment